

LCD Data Sheet

LM20X21A Dot Matrix LCD Unit

FEATURES

- STHC (Super Twisted High Contrast)
 Yellow Green Transmissive Type
- Low Power Consumption
- Thin, Lightweight Design Permits Easy Installation in a Variety of Equipment
- General-Purpose CMOS:
 - The Unit can be Easily Interfaced to a Microcomputer With Common 4-Bit and 8-Bit Parallel Inputs and Outputs
- Built-In Character Generator ROM, RAM, and Display Data RAM:
 - Character Generator ROM 160
 Different 5 × 7 Dot Matrix Character
 Patterns
 - Character Generator RAM Eight Different, User-Programmed 5 × 7 Dot Matrix Patterns (Write Capability by Program)
 - Display Data RAM − 80 × 8 Bits

- Extensive Instruction Set:
 - Display Clear, Cursor Home, Display ON/OFF, Cursor ON/OFF, Character Blink, Cursor Shift, and Display Shift
- Internal Automatic Reset Circuit at Power-On
- Operates From a Single 5 V Power Supply and Incorporates an LCD Panel Which Provides a Highly Stable Display Over a Wide Range of Temperatures

DESCRIPTION

The SHARP LM20X21A Dot Matrix LCD Unit consists of a combination of a 5×7 dot 20-character 2-line dot matrix LCD panel, LCD driver, and controller LSI and yellow green backlight LED mounted on a single printed circuit board. Incorporating mask ROM-based character generator and display data RAM in the controller LSI, the unit is capable of efficiently displaying the desired characters under microcomputer control. LCD is positive type.

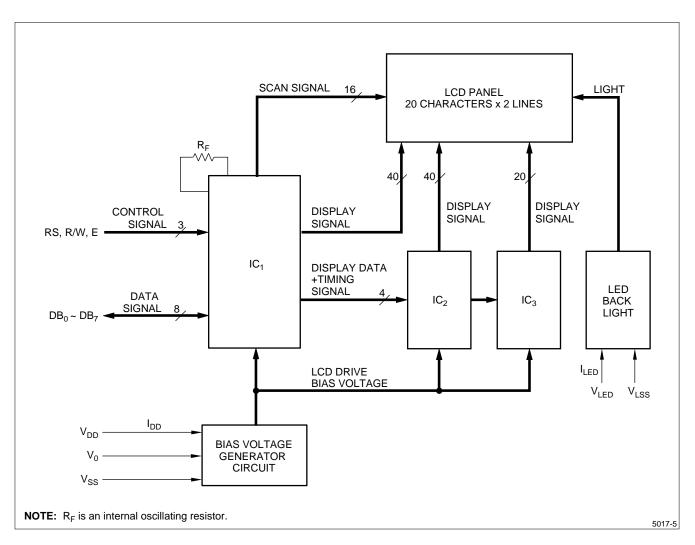


Figure 1. LM20X21A Block Diagram

Page 2 LCD Data Sheet

MECHANICAL SPECIFICATIONS

PARAMETER	SPECIFICATIONS	UNIT	NOTE
Outline Dimensions	115 (W) × 36 (H) × 16 max (D)	mm	ı
Active Area	83 (W) × 18.6 (H)	mm	1
Display Format	20 characters × 2 lines	ı	1
Character Format	5×7 dots, with cursor	1	1
Character Size	3.2 (W) × 4.85 (H) (5 × 7 dots)	mm	1
Dot Size	0.6 (W) × 0.65 (H)	mm	1
Dot Spacing	0.05	mm	I
Character Color	Dark blue	1	1
Backlight Color	Yellow green	-	1
Weight	Approximately 50	g	1

NOTE:

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	NOTE
$V_{DD} - V_{SS}$	Supply Voltage (Logic)	-0.3	+6.5	V	_
Vo - Vss	Supply Voltage (LCD Drive)	0	+6.5	V	VDD > V ₀
I _{LED}	Supply Current (Backlight LED)	_	260	mA	t _A = 25°C
VIN	Input Voltage	-0.3	V _{DD} +0.3	V	_
Tstg	Storage Temperature	-25	+70	°C	_
Topr	Operating Temperature	0	+50	°C	_
V _{LED} - V _{LSS}	Reverse Voltage (Backlight LED)	- 5	_	V	_

^{1.} Due to the characteristics of the LC material, the colors vary with environmental temperature.

ELECTRICAL CHARACTERISTICS ($t_A = 25^{\circ}C$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	NOTE	
V _{DD} - V _{SS}	Supply Voltage (Logic)	4.75	5.0	5.25	V	_
Vo – Vss	Supply Voltage (LCD	-	0.65	_	V	V _{DD} = 5.0 V, Note 1	
V _{IL}	Input Voltage	'L'	-0.3	_	0.6	V	-
V _{IH}	input voitage	'H'	2.2	1	V_{DD}	V	-
VoL	Output Voltage	'L'	-	_	0.4	V	I _{OL} = 1.2 mA
V _{OH}	Output voltage	'H'	2.4	_	_	V	$I_{OH} = -0.205 \text{ mA}$
I _{IL}	Input Leakage Curren	t	1	1	1	μA	_
fosc	Internal Oscillating Fro	equency	-	250	_	kHz	_
I _{DD}	Supply Current			1.8	2.5	mA	V _{DD} = 5.0 V V _O = 0 V
I _{LED}			1	220	260	mA	$V_{LED} - V_{LSS} = 5.0 \text{ V}$
P _D	Power Dissipation	1	1109	1312.5	mW	$V_{DD} = 5.0 \text{ V}, V_{O} = 0 \text{ V}$ $V_{LED} - V_{LSS} = 5.0 \text{ V}$	
V _{LED} - V _{LSS}	Supply Voltage (Back	ight LED)	4.75	5.0	5.25	V	_

NOTE:

INTERFACE TIMING ($V_{DD} = 5.0 \text{ V} \pm 5\%$, $t_A = 0 \text{ to } 50^{\circ}\text{C}$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
tcyce	Enable Cycle Time	1000	-	_	ns
PW _{EH}	Enable Pulse Width	450	1	1	ns
ter, ter	Enable Rise/Fall Time	_	-	25	ns
t _{AS}	RS, R/W Setup Time	140	_	_	ns
t _{AH}	Address Hold Time	10	1	1	ns
t _{DSW}	Data Setup Time	195	-	-	ns
t _{DDR}	Data Delay Time	_	1	320	ns
t _H	Data Hold Time (Write)	10	1	1	ns
t _{DHR}	Data Hold Time (Read)	20	-	-	ns

Page 4 LCD Data Sheet

^{1.} When more than 60 minutes have elapsed since backlighting began.

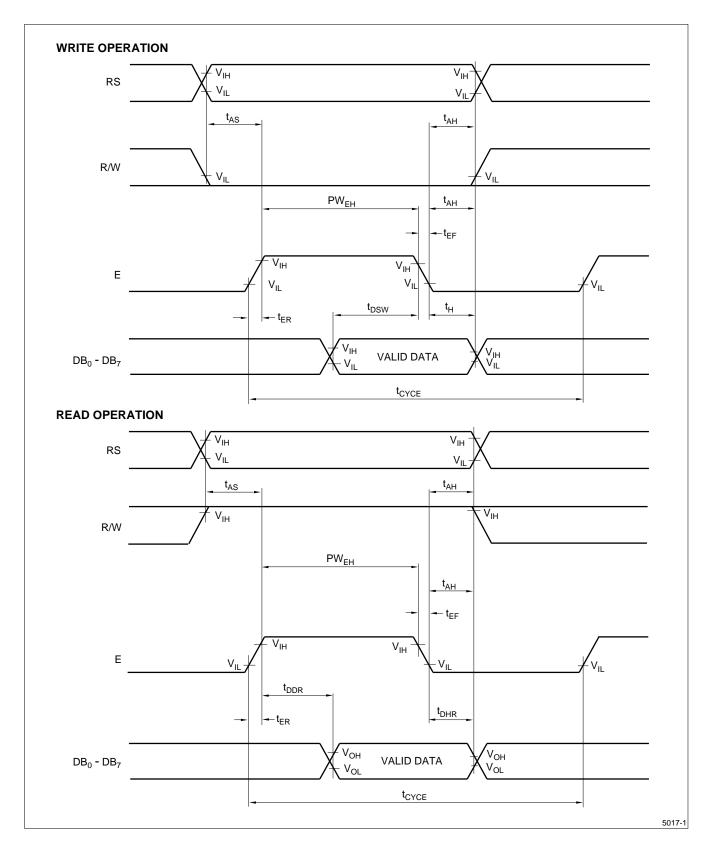


Figure 2. Interface Timing Chart

PIN CONNECTIONS

PIN NUMBER	SYMBOL	DESCRIPTION	CONNECTION				
1	V _{SS}	Ground Potential	GND: 0 V				
2	V_{DD}	Power Supply	+5 V Power Supply				
3	Vo	Contrast Adjustment Voltage	Adjust the contrast by supplying voltage from 0 V to 5 V				
4	RS	Register Select Pin					
5	R/W	Read/Write Select Pin	Control signal inputs				
6	Е	Enable Pin					
7	DB_0	Code I/O Data LSB					
8	DB ₁	Code I/O Data 2nd Bit					
9	DB_2	Code I/O Data 3rd Bit	Data bus signals				
10	DB ₃	Code I/O Data 4th Bit	 DB₇ may also be used to check the busy flag DB₀ to DB₃ are not used when interfacing 				
11	DB ₄	Code I/O Data 5th Bit	with a 4-bit microprocessor				
12	DB ₅	Code I/O Data 6th Bit					
13	DB ₆	Code I/O Data 7th Bit					
14	DB ₇	Code I/O Data MSB					
15	V_{LED}	Power Supply (+)	5 V power supply between V _{LED} and V _{LSS}				
16	VLSS	Power Supply (-)	o v power supply between view and viss				

Page 6 LCD Data Sheet

OPTICAL CHARACTERISTICS $t_A = 25^{\circ}C$ (When Backlight LED is in the OFF State)

The table below shows the optical characteristics when LCD drive voltage is adjusted to the maximum contrast in $\theta = 0^{\circ}$.

SYMBOL	PARAMETER	CONI	DITION	MIN.	TYP.	MAX.	UNIT	NOTE	
$\theta_2 - \theta_1$		φ = 0°	$C_0 \ge 2.0$	60	_	_			
0 1				C 20	_	_	-25		
0 ₂	Viewing Angle Range	$\theta_1 < \theta_2$	$C_0 = 2.0$	25	_	_	degrees	1	
$\theta_2 - \theta_1$		φ = 45°	C ₀ ≥ 2.0	60	_	_			
θ ₁		315°	0 00	_	_	-25			
θ ₂		$\mathbf{\theta}_1 < \mathbf{\theta}_2$	$C_0 = 2.0$	25	_	_			
C ₀	Contrast Ratio	θ = 0°	, φ = 0°	5.0	8.0	_	_	2	
t _R	Response Speed – Rise	$\theta = 0^{\circ}, \phi = 0^{\circ}$		1	150	250	ms	3	
t _D	Response Speed – Decay	θ = 0°	, φ = 0°	_	150	250	ms	3	

NOTES:

- 1. The viewing angle range is defined as shown in Figure 3.
- Contrast ratio is defined as follows:
 When input signal is applied to the unit to select (turn on) the LCD dots (pixels) to be measured in the optical characteristics test method as defined in Figure 4.

Contrast ratio = Photodetector output voltage with non-select waveform being applied Photodetectoroutput voltage with select waveform being applied

3. When input signal for selecting or non-selecting the dots to be measured are applied using the optical characteristics test method shown in Figure 4. The response characteristics of the photodetector output are measured as shown in Figure 5.

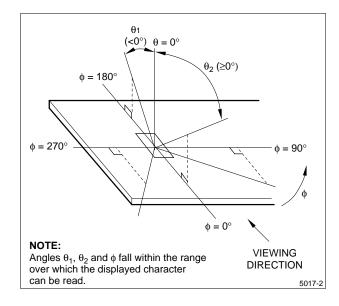


Figure 3. Definition of Viewing Angle

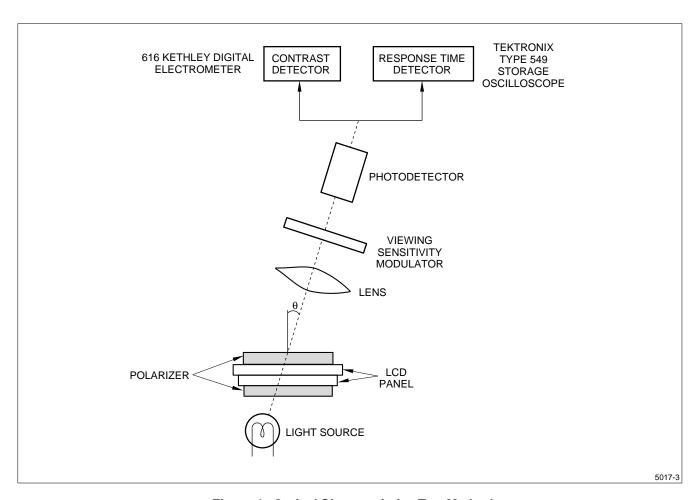


Figure 4. Optical Characteristics Test Method

Page 8 LCD Data Sheet

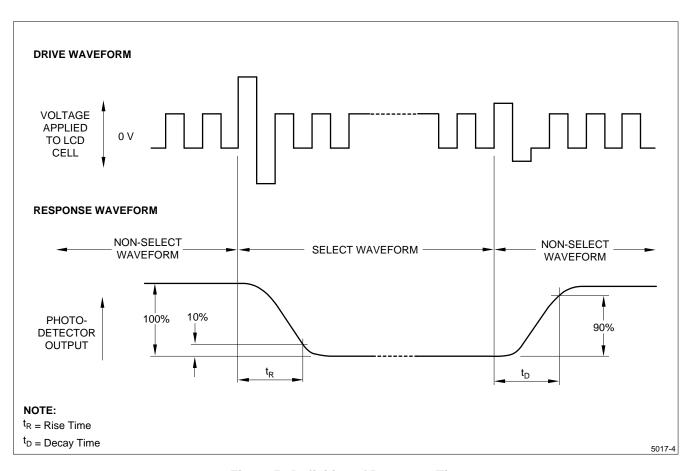


Figure 5. Definition of Response Time

CHARACTERISTICS OF BACKLIGHT LED ($t_A = 25^{\circ}C$, $V_{LED} - V_{LSS} = 5.0 \text{ V}$) (When LCD is in OFF State)

PARAMETER	MIN.	TYP.	MAX.	UNIT	NOTE
Luminance	9	25	_	cd/m ²	1
Peak emission wavelength	_	565	_	nm	-
Spectrum radiation bandwidth	_	30	_	nm	_

NOTE:

1. Center of the unit with LED backlight lit.

PIN DESCRIPTION

V_{DD} and **V_{SS}** Pins

 V_{DD} and V_{SS} pins are for the power supply. V_{SS} pin is grounded, and V_{DD} pin is supplied with +5 V. Each voltage necessary to drive LCD is generated in the unit.

RS Pin

The controller LSI contains two 8-bit registers: instructions register (IR) and data register (DR).

RS pin selects these registers. IR serves to store instruction codes for display clear, shft, etc. and address information for display data RAM (DD RAM), character generator RAM (CG RAM); DR serves to temporarily store data to be written into DD RAM and CG RAM.

'0': Instruction register (Write) Busy flag register; address counter (Read)

'1': Data register (Read/Write)

R/W Pin

Read or write selection signal pin.

'0': Write

'1': Read

E Pin

Data read or write operation enable signal pin.

DB₀ to DB₇ Pins

Tri-state bidirectional data bus pins. The bus allows data to be transmitted to or received from the external circuit. DB_7 serves also as busy flag output. When the unit is interfaced to a microcomputer with 4-bit parallel outputs, DB_0 to DB_3 pins are not used.

Vo Pin

Viewing angle is varied and contrast is adjusted by changing input voltage between +5 V to 0 V by applying bias voltage to the LCD driver.

VLED and **VLSS**

Power supply for LED backlight. By changing the supply voltage, backlight luminance can be adjusted. V_{LED} is plus and V_{LSS} is minus.

Page 10 LCD Data Sheet

INSTRUCTION SET

INSTRUCTION	CODES							DESCRIPTION					
INSTRUCTION	RS	R/W	DB ₇	DB ₆	DB ₅	DB ₄	DB ₃	DB ₂	DB ₁	DB ₀	DESCRIPTION		
Display Clear	0	0	0	0	0	0	0	0	0	1	After entirely clearing the display, moves cursor to home position (address 00H).		
Cursor Home	0	0	0	0	0	0	0	0	1	*	Returns cursor to home position (address 00H). Restores display from shift. The contents of DD RAM remains unchanged.		
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Decides which direction cursor is to be moved and whether display is to be shifted. The above operation is performed during a write or read cycle.		
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	Turns on and off display (D); cursor (C); blinks the character in the cursor position (B).		
Cursor/ Display Shift	0	0	0	0	0	1	S/C	R/L	*	*	Shifts the internal cursor and display while the contents of DD RAM remains unchanged.		
Function Set	0	0	0	0	1	DL	1	0	*	*	Sets interface data length (DL).		
CG RAM Address Set	0	0	0	1			А	CG			Sets CG RAM address (Acg). The subsequent data is CG RAM data.		
DD RAM Address Set	0	0	1				Add				Sets DD RAM address (A _{DD}). The subsequent data is DD RAM data.		
Busy Flag/ Address Counter Read	0	1	BF				AC				Reads out busy flag (BF) denoting internal operation and address counter (AC).		
CG RAM/ DD RAM Data Write	1	0			Write data						Writes data into DD RAM or CG RAM.		
CG RAM/ DD RAM Data Read	1	1				Read	d data				Reads data from DD RAM or CG RAM.		

NOTES:

I/D = 1: Increment

S = 1: Display shift

D = 1: Display ON

C = 1: Cursor ON

B = 1: Character at cursor position blinks

I/D = 0: Decrement

S = 0: Display freeze

D = 0: Display OFF

C = 0: Cursor OFF

B = 0: Character at cursor position unblinks

S/C = 1: Display shift

R/L = 1: Right shift

DL = 1: 8 bits

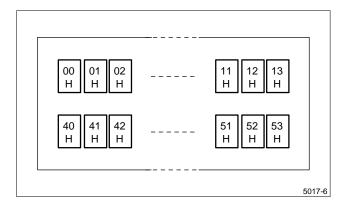
BF = 1: During internal operation

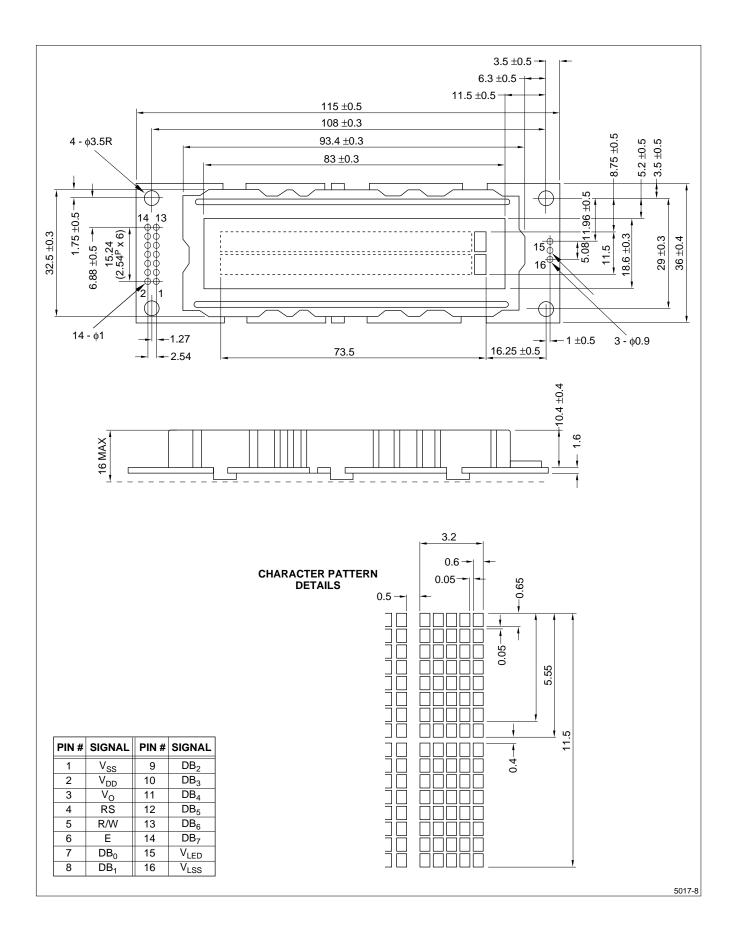
S/C = 0: Internal cursor shift

R/L = 0: Left shift

DL = 0: 4 bits

BF = 0: End of internal operation




Figure 6. Display Address (When the Display is Not Shifted)

HIGH-ORDER													
LOW- ORDER 4 BIT	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)					•			*****				*
xxxx0001	(2)		1								i		*
xxxx0010	(3)	11					! -		•		.:: ¹	*	
xxxx0011	(4)					ŧ			:::::				
xxxx0100	(5)	#						•••		! -	-	*	====;
xxx0101	(6)						1	==	-			::::	
xxx0110	(7)				1		11					*	
xxxx0111	(8)	:	:									*	
xxxx1000	(1)	•				1	:::		-::;		Į.		
xxxx1001	(2)				1	:			•			1	*
xxxx1010	(3)	:4:	##							1 1		*	
xxxx1011	(4)		:	K		l:	4		•			::	
xxxx1100	(5)	:		!				-	 !		:::	-	
xxxx1101	(6)			H		!			. 	••••	:		
xxxx1110	(7)			H	•••	1"1					-,		
xxxx1111	(8)					===	-	:::	•!	***			*

NOTES:

- CG RAM is character generator RAM in which user-definable character patterns are stored.
 X mark: prohibition of input.

Figure 7. Input Code vs. Character Pattern

